

Institut de Génétique Humaine

mRNA Regulation and Development Martine Simonelig

Drosophila models of muscular dystrophies

The *Drosophila* model of Oculopharyngeal muscular dystrophy (OPMD)

Aymeric Chartier, Cécile Ribot, Anne-Laure Bougé, Nicolas Barbezier, Cédric Soler, Laurie Maynadier

Maladies Rares et Organismes Modèles - October 8, 2012

Drosophila as a model to study human genetic diseases

• Why does it work?

Genomes and molecular functions are conserved between man and *Drosophila*: 77% of genes involved in human genetic diseases have a homologue in *Drosophila*

Advantages of Drosophila

Rapid analysis (new generation in two weeks)

Drosophila is genetically tractable: highly sophisticated genetic tools

Possibility of large scale screens: genetics or molecules:

- to understand molecular mechanisms of the disease
- to find targets for possible therapies

Disease models available in Drosophila

Cancer, mental retardation, diabetes,

Innate immunity: 2011 Nobel Price of Medicine in Drosophila: Pr Jules Hoffman

Neurodegenerative diseases, muscular dystrophies, etc....

OPMD: oculopharyngeal muscular dystrophy

Trapèzes

Deltoïdes / Epaules

Bicep

Quadricen

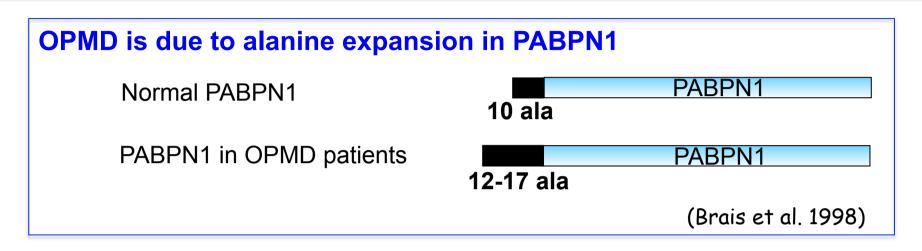
Avant-bra

Pectorau

Adducteur

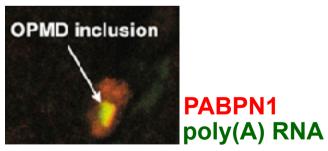
Abdominaux

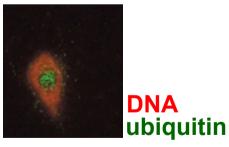
Hino et al., 2004


Autosomal dominant muscular dystrophy

 Late onset (fifth decade) and progressive weakening of muscles that hold eyelids, leading to ptosis involved in swallowing, leading to dysphagia limb muscles

Characterized at the ultrastructural level by nuclear inclusions of tubular filaments (8.5 nm diameter), found in muscle fiber nuclei only in 2% to 9% of the muscle nuclei


OPMD is a rare disease: 1/100 000 in France But more common in Quebec: 1/ 1000


Molecular mechanisms leading to OPMD

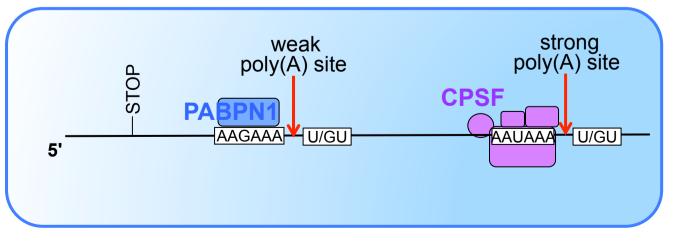
OPMD is a protein aggregation disorder

Nuclear inclusions in muscles of OPMD patients contain: mutant PABPN1, HSP70, ubiquitin, proteasome subunits, poly(A) RNA

(M. Carmo-Fonseca, 2000)

Extension of the alanine tract in PABPN1 leads to the formation of insoluble PABPN1 aggregates in muscle nuclei

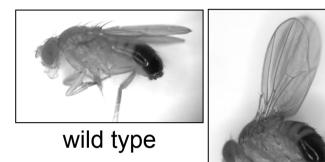
Molecular function of PABPN1


PABPN1 is involved in nuclear polyadenylation in mammals (E. Wahle)
This function is conserved in *Drosophila* (Benoit et al. Developmental Cell 2005)

PABPN1:

- stimulates PAP
- controls poly(A) tail length

PABPN1 prevents utilisation of weak poly(A) sites (Jenal et al. 2012, de Klerk 2012)

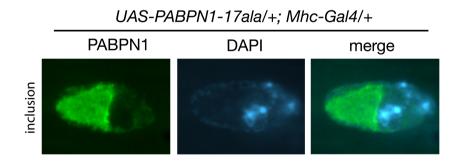


In OPMD mice:

- 3'UTR tend to be shorter
- Increased expression of mRNAs with short 3'UTR

The Drosophila model of OPMD


Expression of mammalian mutant PABPN1-17ala in *Drosophila* muscles:


UAS-PABPN1-17ala expressed with *Mhc-Gal4* driver (specific to muscles)

PABPN1-17ala in muscles

• Progressive muscle degeneration

Formation of nuclear aggregates

Chartier et al. EMBO J. 2006

Utilisation of the Drosophila model of OPMD

Understand the pathophysiology of OPMD

Transcriptomic and genetic approaches to identify molecular pathways involved in the disease process

genome-wide genetic screens to identify suppressors of OPMD phenotypes

• Evaluation/Identification of therapeutic strategies for OPMD

- Anti-PABPN1 intrabodies as suppressors of OPMD in Drosophila
- Identification of drugs as suppressors of OPMD in *Drosophila*

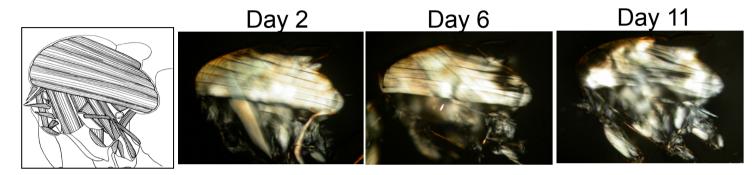
OPMD European consortia

EU networks: FP5: 2002-2005 & FP6: 2006-2009

Present:

AFM eOPMD (5 partners)

Pathophysiology and therapeutic approaches in OPMD

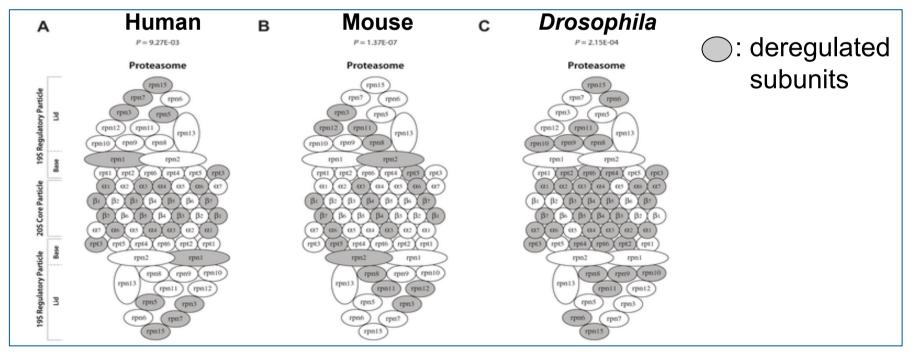

Available resources in the network:

Cell models:
S. van der Maarel, V. Raz, LUMC, The Netherlands
G. Butler-Browne, Institut de Myologie, France
Mouse model:
Mouse model:
Dickson, RHU of London, UK
Butler-Browne, Institut de Myologie, France
Patient biopsies:
Pr Baziel van Engelen, Radboud University, The Netherlands
G. Butler-Browne, Institut de Myologie, France
Therapeutic tools: vectors for gene therapy
G. Dickson, RHU of London, UK

Possible validation of information from models up to patients

Transcriptomic analysis of OPMD muscles in Drosophila

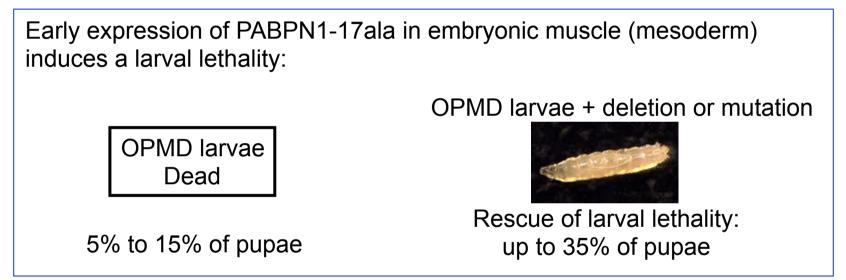
Transcriptomic analysis of thoracic muscles in OPMD and control flies at three time points



				_	Identification of cellular pathways by GO term
	day 2	day 6	day 11		enrichment:
up-regulated genes	196	349	282		«Proteasome complex»
down-regulated genes	289	305	319		«Mitochondrion»

Chartier et al. HMG 2009

Consistent deregulation of the Ubiquitin-Proteasome System (UPS) in OPMD across species


KEGG Pathways	Human	Mouse	Drosophila	
Ubiquitin mediated proteolysis	1.52 E-03	8.25 E-08	2.03 E-03	
Proteasome	9.27 E-03	1.37 E-07	2.15 E-04	Silvere van der Maarel Vered Raz

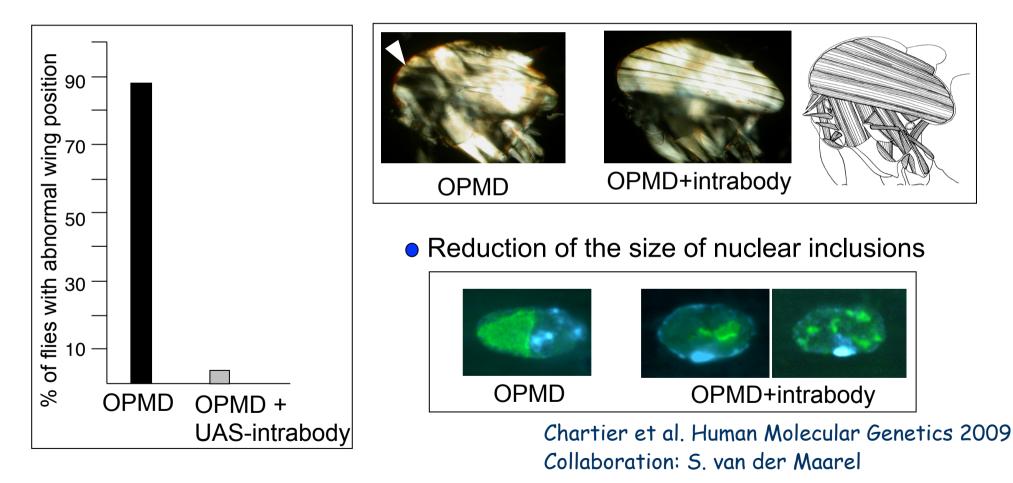
Anvar et al. Skeletal Muscle 2011

Identification of molecular pathways involved in OPMD using genetic screens in the *Drosophila* model

Genome-wide genetic screen using large genomic deletions (deficiencies)
Screen on larval lethality

 Specific genetic screen: for regulators of mRNA metabolism and RNA binding proteins (17 genes tested)
Screen in adults, on wing position defects

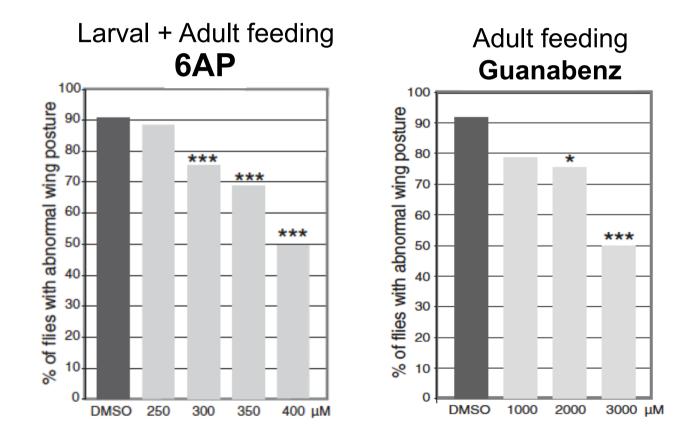
Results of genetic screens: pathways involved in OPMD


43 suppressors/enhancer identified 37/43 have one or several homologues in man

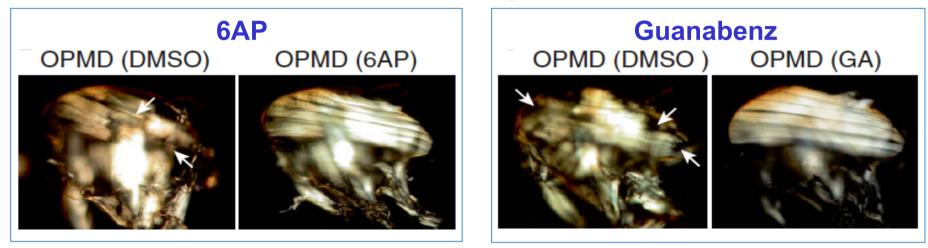
• Major pathways involved in OPMD:

Hsp70: protein chaperone Ubiquitin-proteasome system Mitochondrion mRNA processing/Regulation of poly(A) tail length

Therapeutic approach 1: anti-PABPN1 intrabody


 Expression of anti-PABPN1 intrabody in muscles suppresses OPMD-like phenotypes in *Drosophila*

Proof of principle that the anti-PABPN1 intrabody has a therapeutic potential in vivo


Therapeutic approach 2: chemical compounds

Anti-prion drugs 6AP (6-aminophenanthridine) and Guanabenz decrease OPMD-like phenotypes in *Drosophila*

Therapeutic approach 2: chemical compounds

• 6AP and Guanabenz reduce muscle degeneration

• 6AP and Guanabenz reduce the PABPN1 aggregation load

6A	P	Guanabenz			
Nuclear Inclusion	surface area	Nuclear Inclusion surface area			
Control (DMSO)	692 ± 303 n=58	Control (DMSO)	555 ± 258 n=48		
6AP	464 ± 279 n=105	Guanabenz	289 ± 230 n=96		

Barbezier et al. EMBO Molecular Medicine 2011 Collaboration: Marc Blondel

Guanabenz, from yeast to Drosophila and mouse...

Therapeutic potential of Guanabenz for OPMD:

Guanabenz has a positive effect in the *Drosophila* model of OPMD
Guanabenz is already used in medicine as a treatment against hypertension, without major side-effects.

In progress: Test of Guanabenz in the mouse model of OPMD by our collaborators: *G.* Dickson, RHU London

Conclusions

Molecular mechanisms of OPMD

Through genetic screens:

- Identification of several pathways potentially involved in OPMD
- mRNA poly(A) tail regulation has a major role in OPMD
- Fonctional validation of the ubiquitin-proteasome pathway, in progress

Potential therapeutic strategies for OPMD

- Proof of principle that the anti-PABPN1 intrabody has a therapeutic potential *in vivo*
- Identification of Guanabenz, a compound used in medicine as beneficial for OPMD in the *Drosophila* model

mRNA Regulation and Development

Institut de Génétique Humaine, Montpellier

Aymeric Chartier 🖌 Cécile Ribot 🖌 Anne-Laure Bougé 🗸 Bridlin Barckmann Isabelle Busseau Jérémy Dufourt Willy Joly **Catherine** Papin Stéphanie Pierson

Past, on the project: Cédric Soler Nicolas Barbezier **Yannick Bidet** Laurie Maymadier

Anne-Laure

Collaborations

AFM eOPMD Projet Stratégique

LUMC, Leiden, The Netherlands Silvere van der Maarel Vered Raz

Institut de Myologie, Paris Capucine Trollet Gillian Butler-Browne

Université de Bretagne Occidentale Marc Blondel

CMrs