

From yeasts to large mammalian models of neuromuscular diseases. *No_body is perfect*

Serge Braun, PharmD, PhD

> 300 diseases

Autoimmune & congenital myasthenic syndromes, Channelopathies Upper MN: Peripheral, sensory/motor Spastic paraplegia neuropathies ALS (CMTs, Friedreich ataxia) Lower MN: **Myelinopathies** Spinal muscular atrophy MS, intoxications (Pb, diphterias) Kennedy syndrome CMT2 (ALS) **Congenital Amyotrophies** (lower, upper legs)

Progressive muscular dystrophies Duchenne, LGMDs, FSHD, DM1/2, DMOP Congenital muscular dystrophies Merosine, Fukuyama, Ullrich, Bethlem, MEB diseases

Distal myopathies Myoshi, Nonaka, Laing

Myofibrillar myopathies Desminopathy, zaspopathy, α-B cristallinopathy

Congenital myopathies Nemaline, central core, centronuclear

Inflammatory myopathies Polymyositis, IBM, Dermatomyositis

Periodic paralysis / channelopathies Hyper/hypo-kaliemic periodic paralysis Myotonias

Metabolic myopathies Mitochondrial, Lipid/Glycogen storage dis

Toxin/drug/endocrine/carcinomamyopathies Steroid, alcohol, colchicine, cachexia

> 300 diseases

Progrossivo muscular dystrophies

Duchenne, LGMDs, FSHD,

DM172, DMOP Congenital muscular dystrophies Merosine, Fukuyama, Ullrich, Bethlem, MEB diseases

Distal myopathies Myoshi, Nonaka, Laing

Myofibrillar myopathies Desminopathy, zaspopathy, α-B cristallinopathy

Congenital myopathies Nemaline, central core, centronuclear

Inflammatory myopathies Polymyositis, IBM, Dermatomyositis

Periodic paralysis / channelopathies Hyper/hypo-kaliemic periodic paralysis Myotonias

Metabolic myopathies Mitochondrial, Lipid/Glycogen storage dis

toxin/drug/endocrine/infectious/ carcinoma- myopathies

Steroid, alconol, colchicine, cachexia

« A model is something simple made by scientists to help them in understanding something complicated » (Segev, 1993)

	Yeast	Worm	Fly	Zebrafish	Mouse	Human
Genes	5-6000 (12Mb)	21 000 (100Mb)	17 000 (123Mb)	15 700 (1.2Gb)	~ 23 000 (2.8Gb)	~ 21 000 (3.3Gb)
Life cycle	2 hours	3 days	12 days	3 months	4 months	Too long
Genes homology with human	20%	50%	60%	80%	85%	100%
Conserved pathways	50%	70%	90%	95%	99%	100%
Nervous system	Νο	Yes	Yes	Yes	Yes	Yes
Survival motor neuron pathway	Νο	Yes	Yes	Yes	Yes	Yes
Potential for high-throughput screening	Yes	Yes	Yes	Yes	Νο	Νο

Spinal muscular atrophy

SMA Туре	Age of Onset Motor (months) Milestones		Age of death (years)
I	<6 months	Never sit	<2 years
II	<18 months	Sit, but never stand, non ambulant SMA	>2 years
Ш	> 18 months	Stand, ambulant SMA	Juvenile, Adult

- Incidence: ~1:6000
- Carrier prevalence in the general population 1/40.

Age of Onset - Life Expectancy

SMN protein localization

- Widely expressed
- Diffusely in cytoplasm and within small punctate nuclear structures (gems)

Gubitz et al. 2004

Rajendra et al. 2007

- Present and moves rapidly and bi-directionally in the axon.
 Also enriched in the growth cone
- NMJ endplate and to the Z-line of myofibrils.

SMN complex and spliceosomal snRNPs assembly

SMN Functions :

- Assembly of snRNPs
- Transcription
- Neurone outgrowth
- Cytoskeleton dynamics
- Axonal transport of mRNA
- NMJ formation and maintenance

A tale of two SMNs (only in humans)

Chromosome 5q

<u>Chr, 5</u>

		Role in s	snRNP				Deleterious	
	Ortholog	assen	nbly	Defective	Impost on	Neuromusquiar	impost of SMN	
	gene	TUDOR RNA binding domain	Ortholog of gemin2	strains	viability	phenotype	over- expression	
Schizosaccharomyces pombe	Yab8 (ySMN)	-	YIP1p	mutant	retarded growth	0	+	
Saccharomyces cerevisiae	no ortholog		Brr1p					
C. elegans	C41g7.1	+	SMI-1	egl-32	decrease progeny	Neuronal defects, uncoordinated locomotion, poor muscle tone. Partial rescue with neuronal SMN	++	
D. melanogaster	Pos. 73A9			SMN ^{E33}	late larval lethality	Pre- and postsynaptic mismatching, desorganized thoracic muscles, no flying/jumping (due to disrupted SMN-actin interaction). Rescue if SMN in both muscles and nerve	no	
Danio rerio (~same with xenopus laevis)	smn	snRNP as	sembly	Morpholino smn knockdown Gemin 3 null mutations	20%lethality	Spinal motoraxon defects only (Smn high early due to maternal RNAs/protein). Defective synaptic maintenance. Rescue with only nerve expression + an sn-RNP- independent function of SMN on axon outgrowth		
				smnY262stop smnL265stop smnG264D missense	survival until second week larval	Same defects + rescue with hSMN driven by the motoneuron-specific zebrafish hb9 promoter Plastin 3 rescues axon defects (also seen in SMA unaffected siblings)		
	smnY h <i>SM</i> /		smnY262stop h <i>SMN2</i>	same	Disruption of an intronic splicing silencer> modest increase in survival, and delay in the presynaptic defect			

Mouse models

Genotype	Severity	
Smn-/-	++++	Death of embryo occurs prior to uterine implantation.
Smn+/-	+	Early acute loss of lumbar spinal cord motor neurons (~30% within 5 weeks), with subsequent slowly progressive reduction over an extended time scale.
Smn-/-; SMN2+/+; SMN1(A111G)+/-	+	Transgene containing the <i>SMN1</i> allele seen in Type I and II patients; survival with no obvious phenotype.
Smn-/-; SMN2+/+; SMN1(VDQNQKE)+/-	+++	Transgene containing <i>SMN1</i> exons 1–6 with an additional motif; has little effect on lifespan extension.
Smn+/-; Gemin2+/-	+	Mice with heterozygous deletion of Smn and Gemin2 display an accelerated loss of motor neurons compared with Smn+/- mice.
Smn-/-; SMN2(89Ahmb)+/-; SMN1(A2G)+/-	+	Mean survival of mice with a single <i>A2G</i> transgene and one copy of <i>SMN2</i> is 227 days, whereas mice homozygous for <i>A2G</i> are relatively indistinguishable from controls.
Smn2B/-	++	Smn transgene harboring three nucleotide substitutions within the exonic splicing enhancer of exon 7.
SmnF7/F7; Alfp-Cre+	++++	SmnF7/F7 mice with Cre-IoxP-mediated deletion of Smn exon 7 in hepatocytes. Causes late embryonic lethality at E18. Heterozygous deletion has no obvious effect.

Short presymptomatic period followed by a fulminant decline

Partially related to the snRNP assembly mechanism

Embryonic lethality reflects neuronal and non-neuronal cell deficit

But strain-background differences

ightarrow may significantly confound interpretation

 \rightarrow suggest gene modifiers

SMA is a disease of low levels of SMN protein

Optimized animal model of SMA needs both a deletion/dysfunction of the *SMN1* gene and the presence of the *SMN2* gene

Only humans have the SMN2 gene

The best way to generate an animal model of SMA is to add the *hSMN2* as a transgene to an animal with a deleted/mutated *SMN1*

SMN2 copy number correlates with disease in humans and mice

Genotype	Severity		
Smn-/-; SMN2(2Hung)+/+	+ to +++	Transgene including human SMN2, SERF1 and part of NAIP; rescues embryonic lethality of Smn-/	
		which ranges from death within 1 week to normal survival	SMN2 is able to
Smn-/-; SMN2(89Ahmb)+/+	+ to +++	Transgene containing only the SMN2 locus, rescues Smn-/- embryonic lethality.	complement the embryonic lethality
		42/56 mice with one or two transgene copies were stillborn or died before 6 hours, with the remainder dying between 4–6 days.	and reduces severity in a dose-
		Mice with eight copies of the transgene reach adulthood	dependent manner
Smn-/-; SMN2(89Ahmb)+/+; SMN∆7+/+	+++	Transgene containing human SMN∆7, the predominant isoform produced by SMN2; improves the phenotype Smn-/-; SMN2+/+.	
		Mean lifespan: 13.3±0.3 days.	
Smn-/-; SMN2(N11)+/-; SMN2(N46)+/-	+++	Mice with three copies of <i>SMN2</i> generated by crossing strains with two (N11) and four (N46) copies.	
		Mean lifespan: 15.2±0.4 days.	
Smn1 tm1Cdid/tm1Cdid; Cre Esr1 and	++++	Inducible <i>Smn</i> alleles that mimic <i>SMN</i> 2 splicing are homozygous embryonic lethal (E12.5–E15.5) and normal when heterozygous.	
Smn1 tm2Cdid/tm2Cdid ; Cre Esr1		In the presence of Cre recombinase, <i>loxP</i> -flanked <i>neomycin</i> (<i>Neo</i>) gene resistance cassettes situated in <i>Smn</i> intron 7 are excised, producing full-length Smn.	
		When crossed with a tamoxifen-inducible Cre allele (Cre Esr1), early embryonic induction of full-length Smn by tamoxifen can rescue embryonic lethality.	

The threshold hypothesis of SMN to partially explain selective motoneuron death

(From Sleigh et al., Dis. Model Mech. 2011)

A time window for the treatment of SMA ?

Hybrid Inducible smn « rescue » allele (Lutz et al. JCI 2011)

Restoration of SMN postsymptomatically \rightarrow NMD phenotype rescued

But a limited therapeutic window (1/2)

 \rightarrow no embryonic lethality

(Lutz et al. JCI 2011)

Embryonically activated :

- E2a-Cre allele
- Sox2-Cre allele (expressed in epiblast at E6) \rightarrow healthy

But a limited therapeutic window (2/2)

(Lutz et al. JCI 2011)

The earlier the protein is restored the lower the defect of the neuromuscular synapse

Tissue-specific ?

SMN is expressed ubiquitously

SC

Skeletal muscle

Genotype	Severity	
Smn F7/∆7 ; NSE-Cre +	++	<i>Smn F7/</i> ^{Δ7} mice with Cre - <i>loxP</i> -mediated deletion of <i>Smn</i> exon 7 in neuronal tissue.
		Mean lifespan: 25 days.
Smn F7/Δ7 ; HSA-Cre +	++	<i>Smn F7/</i> ^{Δ7} mice with Cre - <i>loxP</i> -mediated deletion of <i>Smn</i> exon 7 in myoblasts and post-mitotic fused myotubes of skeletal muscle.
		Mean lifespan: 33 days.
Smn F7/F7 ; HSA-Cre +	+	<i>Smn F7/F7</i> mice with Cre- <i>loxP</i> -mediated deletion of <i>Smn</i> exon 7 in post- mitotic fused myotubes of skeletal muscle.
		Without heterozygous deletion of <i>Smn</i> exon 7 in all somatic cells,
		animals live for a median of 8 months.
Smn F7/F7 ; NSE-Cre +	++	Smn F7/F7 mice with Cre-loxP -mediated deletion of Smn exon 7 in
		neuronal tissue.
		Mean lifespan: 31±2 days.
Smn F7 /-;	+	Smn F7 /-; SMN2 +/+ mice (i.e. Smn +/-; SMN2 +/+) with Cre-loxP -
SMN2(89Ahmb) +/+; Olig2-		mediated deletion of Smn exon 7 in spinal cord motor neuron
Cre+		progenitor cells.
		~70% of mutants survived to 12 months, yet were clearly
		distinguishable from controls.

- Motoneuron cell body loss is due to a **dying back axonopathy**
- Muscle (satellite cells) also plays a primary role (also seen in the drosophila)
- Why primary impact on lower motoneurons ? (Dose ? Specific splicing defects ?)

Barkats et al.

Therapeutic strategies for SMA

SMN serves more as a **MN maintenance** factor rather than being a critical component of the neurodevelopmental process

SMN serves more as a **MN maintenance** factor rather than being a critical component of the neurodevelopmental process

The disease may be treated postsymptomatically

SMN serves more as a **MN maintenance** factor rather than being a critical component of the neurodevelopmental process

The disease may be **treated postsymptomatically**

SMA is a multisystemic disorder \rightarrow therapy should be delivered systematically

SMN serves more as a **MN maintenance** factor rather than being a critical component of the neurodevelopmental process

The disease may be **treated postsymptomatically**

SMA is a multisystemic disorder \rightarrow therapy should be delivered systematically

Therapy to be delivered **chronically or acutely**? (to be addressed by temporally depleting SMN)

SMN serves more as a **MN maintenance** factor rather than being a critical component of the neurodevelopmental process

The disease may be **treated postsymptomatically**

SMA is a multisystemic disorder \rightarrow therapy should be delivered systematically

Therapy to be delivered **chronically or acutely**? (to be addressed by temporally depleting SMN)

A reduction in SMN levels by 50% worsens motor performance and survival of the SODG93A mouse model of ALS:

→ SMN is required throughout life SMN a therapeutic target of ALS ?

Amyotrophic Lateral Sclerosis

Late onset neurodegenerative disorder Incidence 1-3 / 100.000 / y

Degeneration of **cortical and spinal cord motoneurons** \rightarrow progressive muscular weakness and death within 3-5 years

- 5 to 10% familial
- Predominantly sporadic due to a complex gene-environment interactions not yet completely clarified

Related MN models ?

Name	Mutated gene	Gene product	Inheritance	Human disease	Pathway
Wobbler	VPS54	Subunit of the GARP complex	recessive		endosome-derived transport vehicles to the trans-Golgi network
Nmd	IGHMBP2	Immunoglobulin <i>µ</i> - binding protein 2	recessive	SMARD1	RNA processing
Pmn	TBCE	tubulin-specific chaperone E	recessive	motor neuropathy HRD/SSS	tubuline-specific chaperone
Loa	DYNC1H1	dynactin	dominant	sensory neuropathy	Axonal transport
Cra	DYNC1H1	dynactin	dominant	sensory neuropathy	

SMARD: spinal muscular atrophy with respiratory distress, HRD: hypoparathyroidism-retardation dysmorphism syndrome, SSS: Sanjad-Sakati syndrome,

ALS subtype	Gene symbol	Protein	Protein function	Human phenotype	Animal model	Animal phenotype	Targets
ALS1	SOD1	Cu/Zn superoxide dismutase	Detoxification enzyme	Varies among mutations from typical ALS type to atypical ALS	numerous mouse and rat mutants (more rapid progression) including overexpressing hSOD1 G93A	MN death by gain of function. Selective expression models> interplay between different cell types	Protein misfolding Oxydative stress not the initiating factor. APP/caspase-6. Microglia, macrophages, astrocytes, Schwann cells, muscle.
ALS4	SETX	Senataxin	Helicase, Repair mechanisms, FGF8 path.	recessive mutations cause ataxia and dominant mutations cause juvenile ALS	yeast orthologue: Sen1p		Transcritpion and RNA metabolism
ALS6 (recessive)	FUS/TLS	fused in sarcoma/ translocated in liposarcoma	RNA metabolism and transcription		FUS/TLS shRNA mice (no overexpressing models available)	No motor phenotype	Transcritpion and RNA metabolism
ALS10 and FTLD-U	TARDBP	Transactivation response DNA- binding protein 43kD (TDP-43)	RNA splicing (hnRNPs))	Neuronal overexpression mouse mutants, induced rats	Motor phenotype but not all ALS features	Transcritpion and RNA metabolism
ALS12	OPTN	Optineurin	membrane trafficking, protein secretion, cell divisior	Mainly Japanese families		Overexpression> glaucoma mouse	Protein trafficking, NF-кВ pathway, colocalized with FUS
ALS2 (recessive)	ALS2	Alsin	Guanine nucleotide exchange factor (GEF) signaling	Juvenile onset, progressive muscle weakness and paralysis	Als2 -/- mice.	Late-onset degeneration of Purkinje. FVB, but B6 have shorter lifespan. No MN phenotype	Endosomal
ALS5 (recessive)	SPG	Spatacsin		autosomal recessive juvenile amyotrophic lateral sclerosis and long-term survival	Morpholino KO Zebrafish	Early neural development	
ALS8 and SMA	VAPB	Synaptobrevin- associated membrane protein B (VAPB)	Vesicular trafficking; acts during ER-Golgi transport and secretion.	Adult onset, slowly progressive upper and lower motor neuron disease. Phenotype varies from SMA type to ALS type	PrP-VAPBP56S	No MN phenotype. TDP-43 accumulation in lower MN	Vesicular trafficking
ALS	СНМР2В	Charged multivesicular body protein 2B (CHMP2B)	Vesicular trafficking; acts as a component of the ESCRTIII (endosomal secretory complex required for transport) complex	Lower dominant motor neuron disease	KO mice	Similar to patients	Vesicular trafficking
CMT4J / ALS 11	FIG4	PI(3,5)P2 5- phosphatase FIG4		spongiform degeneration of the central nervous system (CNS) and substantial loss of peripheral neurons from sensory and sympathetic ganglia	Spontaneous Fig4 (pale tremor) mouse	extensive spongiform degeneration of the CNS and substantial loss of peripheral neurons from sensory and sympathetic ganglia	Vesicular trafficking
ALS 9	ANG	hypoxia-inducible factor angiogenin	Angiogenesis and MN survival	ALS + Parkinson	transgenic VEGF	late onset loss of MN	Angiogenesis

A complex array of interconnected pathological processes :

- Dying back pattern
- Glutamate excitotoxicity
- Dysregulation of neurotrophic factors and axon guidance proteins
 - axonal transport defects
- Mitochondrial dysfunction
- Deficient protein quality control
- RNA processing

Genetic modifiers ?

« Mechanistic » mutants

Target	Neuropatholgy			
Protein misfolding				
Synucloin mutant	IF and SOD1 aggregates, parikaryal inclusions and			
	speroid-like inclusions in motor neurons			
Intermediate neurofilament abnormalities				
Human NF-H or NF-L overexpressor	Perikaryal accumulation of NF and axonal atrophy			
Mutant NF-L (CMT2E)	Massive degeneration of spinal motor neurons			
NF-L knockout	Developmental loss of 20% motor neurons			
Peripherin overexpressor	Loss of spinal motor neurons			
Microtubule abnormalities				
p50 dynactin subunit (dynamitin) overexpressor (p150(Glued mice)	Loss of motor axons			
KIF5A knockout	NF accumulations			
Dynein mutations	Loss of motor neurons			
Short tau overexpressor	Loss of motor axons			
Angiogenesis				
VEGF δ-HRE	Late-onset loss of motor neurons			
	From Laguna et al., BioValleyMonographs Vol 2 (2008)			

sALS genetic factors

ALS, sporadic 6q12 VEGF 22q12.1-NFHC q13.1 6q21.3 HFE 7q21.3 PON1 5q13 SMN 7q36 DPP6 12p11.23 ITPR2 1p32.1 FLJ10986 17q21 PGRN ALS, familiar and 14q11.2 ANG sporadic ALS, familiar and 1p36 TARDBP sporadic

Environmental factors ?

Pesticides Heavy metals (i.e. Mb, Hg) Excessive physical activity Head injuries Cigarette smoking Electromagnetic fields

Expert Reviews in Molecular Medicine © 2006 Cambridge University Press

Therapeutics proposed from transgenic models

> 150 clinical trials

...1 registrated drug

Table 13. Neuroprotective agents with potential effect on ALS.

- Antiaggregation
 - Scriptaid
 - Trehalose
- Anti-apoptosis
- Activated protein C
- Calpain inhibitors
- Caspase inhibitors
- Minocycline
- Clusterin
- DNA binding drugs
 Lithium
- Rasagiline
- Kasagitile
 TCH 346
- Antiepileptic drugs
- Levetiracetam
- Valproic acid
- Anti-excitotoxicity
- AMPA receptor antagonist
 - Memantine
 - NBQX
- RPR 119990
- EAAT2 promoter activity
 - Ceftriaxone
- Glutamate carboxypeptidase II inhibitor: 2-MPPA
- Glutamate inhibitor
- Riluzole
- Talampanel
- Metabotropic glutamate receptor modulators
- Cannabinoids
- Dexanabinol (HU-211)
- Glutathione
- NMDA NR2B subunit receptor antagonists
- Ifenprodil
- Magnesium
- NAALADase inhibitors
- Anti-inflamation
- Interleukin-1 antagonists
- COX inhibitor
- Celecoxib
- Rofecoxib
- Sulindac
- Protein kinase C inhibitor
- Tamoxifen
- Antioxidants
- AEOL 10150
- Co-enzime Q10
- Lipoic acid
- N-acetyl-L-cysteine
 Synthetic SOD catalase
- Synthetic SOD cata
 Cell based therapy
- Umbilical cord blood cells
- BM transplant
- AAV: adeno-associated-virus; AVR: Adenovirus; LV: Lentivirus; BM: bone marrow.

- Chemotherapy
- Cyclosporine A
- Vincristine
- Cupper chelator
- Trientine
 d-penicillamine
- Gene therapy
 - RNAi-based therapy
- Hormones
 - Selective estrogen receptor modulators
 - Receptor-independent neuroprotective effects of estrogens
- Immunomodulator
 - Copaxone/glatiramate
 - Thalidomide
- Ion Channel modulators
 - Calcium channel blockers
 - Nimodipine.
 - Na⁺ channel blockers.
 - Neuroprotective potassium channel inhibitors
- Mitochondria-targeted
- Arimoclomol
- Glutathione
- Heat shock proteins
- Hyperbaric oxygen therapy
- Omega-3 fatty acids
- Vitamine E
- Neurotrophic factors
 - Brain-derived neurotrophic factor (BDNF)
 - Ciliary neurotrophic factor (CNTF)
 - Fibroblast growth factors (FGF)
 - Glial cell line-derived neurotrophic factor (GCDNF)
 - Insulin-like growth factor (IGF)
 - Nerve growth factor (NGF)
 - Neurotrophins (NTF)
 - Vascular endothelial growth factor (VEGF)
- Transcranial magnetic stimulation
 - Combination therapy
 - Drugs Rofecoxib and creatine Rasagiline and riluzole
 - Minocycline, riluzole and nimodipine
 - Growth factor and virus AAV-CTI AAV-GDNF AAV-IGF
 - AVR-GDNF
 - LV-VEGF
 - VEGF

Validity of the animal models ?

- Artifacts due to i.e. synthesis rate of mutant human SOD1 in mice (40-fold endogenous mouse SOD1)
- Need later onsets in mice and lower copy numbers
- Mice do not truly reflect human ALS (i.e. rare upper MN defects; anyway UMN have different functional consequences; + too aggressive in mice)
- Mutant SOD1 mice **do not model sporadic ALS**

- Differences in **pharmacokinetics**
- Effects observed in the mouse are small and can be missed in a clinically and genetically heterogeneous human ALS
- Underpowered studies (before onset in mice)→ guidelines (ALS, 2010)

Scott et al. (ALS 2008): 70 drugs screened in 18000 mice accross 221 blinded studies in 3 distinct facilities (basic, clean, SPF) :

- **Gender effects confirmed** (but required > 200 animals)
- No active compound (rather measurements of noise in the distribution of survival means; 134+/-10 days). Including Riluzole (requires many thousands of patients)
- **Student's** *t***-test/ANOVA not appropriate** (to survival studies in general + cannot address litter clustering inherent to SOD1 mice)
- Effects on other non-ALS related illness? (i.e. many are antibiotics or antiinflammatory)

Scott et al. (ALS 2008): 70 drugs screened in 18000 mice accross 221 blinded studies in 3 distinct facilities (basic, clean, SPF) :

- **Gender effects confirmed** (but required > 200 animals)
- No active compound (rather measurements of noise in the distribution of survival means; 134+/-10 days). Including Riluzole (requires many thousands of patients)
- **Student's** *t***-test/ANOVA not appropriate** (to survival studies in general + cannot address litter clustering inherent to SOD1 mice)
- Effects on other non-ALS related illness? (i.e. many are antibiotics or antiinflammatory)

Recommandations :

- ✓ Each cohort should have at least 24 litter-matched gender-balanced mice
- ✓ Study should be **double-blinded**
- ✓ Need a **single uniform endpoint** criterion
- ✓ **Non-ALS deaths** must be tracked and excluded from final analysis
- ✓ **Exclude long-lived animals** due to a low copy number of transgene copies
- ✓ Statistical analysis: Cox proportional hazards model
- ✓ Age at study start

Main areas of muscle weakness in different types of dystrophy

Duchenne muscular dystrophy:

• 1/3,500 male births

J Neuropathol Exp Neurol. 2009;68:762-73

- Progressive muscle waisting. Death from DMD usually occurs by age of 30
- Mental retardation (30%), smooth muscle disorders, cardiomyopathy
- Diagnosis: 16 months 8 years

Becker muscular dystrophy: later onset, mostly milder

C56BL/10ScSn *mdx*: naturally occuring dystrophin-deficient mutant 2700 publications

- Slightly shorter life span
- Muscle degeneration in waves (not a continuum like in DMD pts)
- ~not symptomatic (but aggravated by forced exercice)
- Very mild fibrosis
- Mild and late cardiomyopathy
- Variations (strain, experimental conditions,...)
- Very robust calcium homeostasis
- Utrophin overexpression
- More regeneration
- Age-dependent revertant fibers
 mdx^{2cv, 3cv, 4cv, 5cv}
- mdx²^(v), ³(v), ⁴(v), ⁵(v)
 mdx52

General Life span	mdx
Life span	
	reduced by 17% in females and 19
	males [7]
	23m [65]
linical signs at onset	CK levels increase, necrosis,
first signs of pathology	2-3w
First signs of cardiomyopathy	6m
Breeding	normal
Kyphosis	9m [22]
Body weight	normal, increases after 8w [14]
	drops by 25% after 6m [65]
Muscle Physiology	
Fore-limb strength (g)	12w: 35g [10,14,68]
	4w: 95g;
	8-12w: 156g [17]
	10w: 30g [10]
	4w. 105g, 8-17wr 138g [17] (1
Fore-limb strength per body weight (g	15 at 8w [14]
strength/g BW)	1.6 at 3w, 10w [69]
0 10 - 11	1.1 at 10w [10]
	75 at 4m (whole body) [16]
	5.34 at 4w, 6.5 at 8w [70]
	4.59 at 4w, 5.07 at 8w [70] ⁽¹⁾
Twitch force (mN)	Edl, 16w: 130 [72]
	Edl, 8w: 12 [20]
	Stm Sw: 50 [45]
Normalized twitch force (mN/mm ² CSA)	Fdl. 10w: 50 [19]
	Sol. 10w: 40 [19]
	Dia, 10w: 20 [19]
	Dia, 7w: 5.8 [22]
	Stm, 8w: 6.6 [46]
	Edl, 8w: 82 [20]
T-1	Edl, 90d: 50.2 [16]
letanic force (min)	Edi, 16W: 370 [72]
	Sol 8w: 57 [20]
	Edl. 10w: 170 [20]
	Edl, 6w: 200 [21]
Normalized tetanic force (mN/mm ² CSA)	Sol, 10w: 200 [19]
	Dia, 10w: 130 [19]
	Dia, 7w: 32 [22]
	Edl, 3-32w: decreased [74]
	Edl, 90d: 147 [16]
Muscle Physiology	
Force drop after eccentric contraction ²	Edl, 16w: 72% [21]
	Edl, 90d: 69% [16]
	Edi, 10w: -41% [19]
Frank data a first fast and a state of	Sol, 10W: 75% [19] Edi: 272 [10]
Force drop after fatigue protocol	
Force drop after fatigue protocol Normalized peak force (mN/mm ² CSA)	Eur. 272 [15]
Force drop after fatigue protocol Normalized peak force (mN/mm ² CSA) Biochemistry	Lui. 272 [15]
Force drop after fatigue protocol Normalized peak force (mN/mm ² CSA) <i>Biochemistry</i> CK	1200 U [42]
Force drop after fatigue protocol Normalized peak force (mN/mm ² CSA) <i>Siochemistry</i> CK	1200 U [42] 5000 U [16] ^Ф 8000 U/I [15] ^Ф 1000
Force drop after fatigue protocol Normalized peak force (mN/mm ² CSA) <i>Biochemistry</i> CK Hydroxympline (fibrosis marker)	1200 U [42] 5000 U [16] [©] 8000 U/I [15] [©] 1000 12000 U/I [17,40] Dia 24w: 10 uc/mg [75]
Force drop after fatigue protocol Normalized peak force (mN/mm² CSA) Biochemistry CK Hydroxyproline (fibrosis marker)	1200 U [42] 5000 U [16] [⊕] 8000 U/l [15] [⊕] 1000 12000 U/l [17,40] Dia, 24w: 19 µg/mg [75] Dia, 7w: 25 µg/mg [22]
Force drop after fatigue protocol Normalized peak force (mN/mm² CSA) Biochemistry CK Hydroxyproline (fibrosis marker)	1200 U [42] 5000 U [16] ^Φ 8000 U/I [15] ^Φ 1000 12000 U/I [17,40] Dia, 24w: 19 μg/mg [75] Dia, 7w: 2.5 μg/mg [22]
Force drop after fatigue protocol Normalized peak force (mN/mm² CSA) Biochemistry CK Hydroxyproline (fibrosis marker) Intracellular [Ca²²]	1200 U [42] 5000 U [46] [∞] 5000 U/l [15] [⊕] 1000 12000 U/l [17,40] Dia, 24w: 19 µg/mg [75] Dia, 7w: 2.5 µg/mg [22] Int, 7w: 0.9 µg/mg [22] normal in Fdb, Sol at 4-9w (in [7/
Force drop after fatigue protocol Normalized peak force (mN/mm² CSA) Biochemistry CK Hydroxyproline (fibrosis marker) Intracellular [Ca²+]	1200 U [42] 5000 U [42] 5000 U [16] ^Φ 8000 U/I [15] ^Φ 1000 12000 U/I [17,40] Dia, 24w: 19 μg/mg [75] Dia, 7w: 2.5 μg/mg [22] Int, 7w: 0.9 μg/mg [22] normal in Fdb, Sol at 4–9w (in [7 normal in Solated Fdb fibers [31]
Force drop after fatigue protocol Normalized peak force (mN/mm² CSA) Biochemistry CK Hydroxyproline (fibrosis marker) Intracellular [Ca²*]	1200 U [42] 5000 U [16] ^Φ 8000 U/I [15] ^Φ 1000 12000 U/I [17,40] Dia, 24w: 19 μg/mg [75] Dia, 7w: 2.5 μg/mg [22] normal in Fdb, Sol at 4-9w (in [7] normal in isolated Fdb fibers [31] 60 μM (higher) in Edl at 8-12w [1
Force drop after fatigue protocol Normalized peak force (mN/mm² CSA) <i>Biochemistry</i> CK Hydroxyproline (fibrosis marker) ntracellular [Ca²²]	1200 U [42] 5000 U [46] ^D 8000 U/I [15] ^D 1000 12000 U/I [17,40] Dia, 24w: 19 µg/ng [75] Dia, 7w: 2.5 µg/mg [22] Int, 7w: 0.9 µg/ng [22] normal in Fdb, Sol at 4-9w (in [7/ normal in Fdb, Sol at 4-9w (in [7/ normal in Solated Fdb fibers]31] 60 µM (higher) in Edl at 8-12w [80 nM (2x higher) in Edl at 8-12w [
Force drop after fatigue protocol Normalized peak force (mN/mm² CSA) Biochemistry CK Hydroxyproline (fibrosis marker) ntracellular [Ca²+]	1200 U [42] 5000 U [42] 5000 U [16] ^Φ 8000 U/I [15] ^Φ 1000 12000 U/I [17,40] Dia, 24w: 19 μg/mg [75] Dia, 7w: 2.5 μg/mg [22] Int, 7w: 0.9 μg/mg [22] normal in 50ated Fdb fibers [31] 60 μM (higher) in EdI at 8-12w [60 nM (2x higher) in EdI at 8-12w [Φ
Force drop after fatigue protocol Normalized peak force (mN/mm² CSA) Biochemistry CK Hydroxyproline (fibrosis marker) Intracellular [Ca²*] Ca²* sparks after hypotonia	1200 U [42] 1200 U [42] 5000 U [16] ^Φ 8000 U/I [15] ^Φ 1000 12000 U/I [17,40] Dia, 7w: 2.5 µg/mg [22] Int, 7w: 0.9 µg/mg [22] normal in 50sled Fdb fibers [31] 60 µM (higher) in Edl at 8-12 w [$Φ$ Fdb: irreversible at 4w [77] for mergene mDM in income fibers
Force drop after fatigue protocol Normalized peak force (mN/mm² CSA) Biochemistry CK Hydroxyproline (fibrosis marker) Intracellular [Ca²*] Ca²+ sparks after hypotonia Parvalbumin	1200 U [42] 1200 U [42] 5000 U [16] ^D 8000 U/I [15] ^D 1000 12000 U/I [17,40] Dia, 24w: 19 µg/mg [75] Dia, 7w: 2.5 µg/mg [22] normal in isolated Fdb fibers [31] 60 µM (higher) in Edl at 8-12w [80 nM (2x higher) in Edl at 8-12w [80 nM (2x higher) in Edl at 8-12w [7db: irreversible at 4w [77] fast muscles: mRNA increases [32] 7da 24w - Quergen [33]
Force drop after fatigue protocol Normalized peak force (mN/mm² CSA) <i>Biochemistry</i> CK Hydroxyproline (fibrosis marker) Intracellular [Ca²+] Ca²+ sparks after hypotonia Parvalbumin	1200 U [42] 5000 U [42] 5000 U [46] ^Φ 8000 U/I [15] ^Φ 1000 12000 U/I [17,40] Dia, 24w: 19 µg/mg [75] Dia, 7w: 2.5 µg/mg [22] Int, 7w: 0.9 µg/mg [22] normal in 5olated Fdb fibers [31] 60 µM (higher) in Edl at 8-12w [80 nM (2x higher) in Edl at 8-12w [Fdb: irreversible at 4w [77] fast muscles: mRNA increases [32] TA, 24w: 9 µg/mg [33] Cas. 24w: 7 µg/mg [34w: 7
Force drop after fatigue protocol Normalized peak force (mN/mm² CSA) Biochemistry CK Hydroxyproline (fibrosis marker) Intracellular [Ca²+] Ca²+ sparks after hypotonia Parvalbumin	1200 U [42] 1200 U [42] 5000 U [16] ² 8000 U/I [15] ^Φ 1000 12000 U/I [17,40] Dia, 24w: 19 µg/mg [22] Int, 7w: 0.9 µg/mg [22] normal in 50alted 7db fibers [31] 60 µM (higher) in Edl at 8-12w [1 80 nM (2x higher) i

Respiratory rate

Response to hypercapnia/hypoxia

altered at 16m [23]

reduced at 7m [78]

Table 1 (continued) Parameter mdx Histology % of centronucleated fibers TA, 7w: 50% [79] emales and 19% in Dia, 7w: 25% [79] Sol, 7w: 56% [79] hind-limb, 4-14w: average 35% [8] Edl. 6w: 58%: TA, 90d : 75% [16] Edl, 10-12w: 64% [80] TA, 10-12w: 74% [80] Dia, 10-12w: 60% [80] fter 8w [14] Fdb, 12w: 25% [81] Gas, 8-10w: 50% [40] @ Histology Fiber size TA, 3w: 302 [79] @ Dia, 3w: 254 [79] @ TA, 7w: 403 [79] 3 Dia, 7w: 433 [79] ⁽³⁾ Sol, 7w: 267 [79] @ Fibrosis Dia at 16m [13] Glut at 24w [14] TA, 8-13w: 6% [15] TA, 8-13w: 9% [15] @ TA, 3w: 20% [9] Necrosis Edl, Bic, 10w: 5% [10] TA, Sol, Edl: peaks at 30-60d [84], decreases after 60d [11] Gas, 8-10w: 20% [17] @ Fiber type composition Edl: 50% I, 50% IIA [20] Edl: 80% IIB, 20% IIX [19] Sol: 65% IIA. 35% I [19] Dia: 90% IIX, 5% IIB [19] TA 90d: 57% IIB [16] Cardiac Physiology 3.6/2 at 42w (increased) Dilated cardiomyopathy (LVEDD/LVESD in mm by echocardiography) [24] 3.7/2.6 at 24m (no change) [29] 3.9/2.9 at 9-10m [27] 3.83 at 10m [30] Heart rate decreased, 612 bpm at 42w [24] 460 bpm at 9-10m [27] 454 bpm at 10m [30] Force output (mN/mm²) 25 at 8w [85] Heart fibrosis (% of area) 7% at 7m [24] 8% at 12m [29] 12% at 24m [29] 1.68% at 11w [41] 6.23% at 11w [41] @ 0.7-3.4% at 10m [30] Hydroxyproline content 4.5 µg/mg at 15m [28] 4 µg/mg at 12-14m [26] ECG abnormal at 6 and 12m U/I [15]@10000/ Left ventricular developed pressure (mm Hg) 80 at 15m [28] Rate of pressure development (mm Hg/s) 2500 at 15m [28] Rate of relaxation (mmHg/s) -2000 at 15m [28] at 4-9w (in [76]) Abbreviations used are: Bic: biceps, Dia: diaphragm, Edl: extensor digitorum longus, Fdb fibers [31] Fdb: flexor digitorum brevis, Gas: gastrocnemius, Glut: gluteus, Int: intercostals, Pl: Edl at 8-12w [18] plantaris, Sol: soleus, Stm: sternomastoid, TA: tibialis anterior. d: days; w: weeks; m: in Edl at 8-12 w [18] months: v: years: BW: body weight: CSA: cross sectional area: CK: creatine kinase: LVEDD; Left ventricular end diastolic diameter; LVESD; left venticular end systolic diameter: bpm: beats per minute.

© exercised *mdx.* © after 5th elongation [19].

Image: Image:

From Willmann et al. Neuromusc. Dis. 2009

Age-related expansion of RF in *mdx* mouse muscles

Massive Idiosyncratic exon skipping corrects the nonsense mutation in dystrophic mouse muscle and produces functional revertant fibers by clonal expansion

Lu Q et al. J Cell Biol 2000;148:985-996

Canine dystrophinopathies have also been reported in many pure bred and mixed breed dogs :

Golden Retriever, Rottweiler, German Shorthaired Pointer, Japanese Spitz dogs,...

- Progressive, with the gradual loss of muscle mass
- **Contractures** that often lead to skeletal deformities
- Enlargement of the base of the tongue
- Pharyngeal and esophageal dysfunction (→ drooling, dysphagia, and regurgitation)
- Skeletal muscles: EMG : spontaneous high frequency discharges and complex repetitive activity
 - Degeneration/regeneration

GRMD:

Rapidly progressing fatal disease
Fibrosis, Cardiomyopathy
Selective muscle involvement (tongue, masticatory, trunk muscles most affected) like in human DMD

CXMD: slower progression, survival increased, **milder** cardiomyopathy

Cats:

clinically different :

- no fibrosis, some cardiomyopathy (hypertrophy)
- restricted shoulder, neck muscle hypertrophy
- dramatic tongue enlargement

Antisense oligo-mediated exon skipping using morpholinos in the CXMD dog

Screening plateforms i.e. C. elegans

Dystrophin-deficient worm (dys-1) Segalat et al. (2005) Treated worm

Identification of lead molecules

Evolutionary conservation of the dystrophin-glycoprotein complex

From Nakamura et al., Semin Cell Dev Biol. 2010

From Wainzof et al. 2008

Genotype (protein absent)	Lifespan	Muscle dystrophy	Cardiomyopathy	Fibrosis	Human disease	C. elegans	Drosophila	Zebrafish	
Mdx (dystrophin), mdx2,3,4,5 cv	>1 year	Mild/Moderate	Very mild	Poor, late	DMD	Dys-1 (hyperactive)	Reduced lifespan + muscle and heart defects. DLP1,2,3. neuromuscular transmission defects	sapje. Mutation in dnAChR suppresses the muscle defect. Other morpholino of RNAi mutants	Revertant fibers
MyoD/mdx (MyoD, dystrophin)	1 year	Severe	severe	Poor, late		Dys-1;hlh-1 (muscle defects)			
Utrn-/-mdx (utrophin, dystrophin)	4-20 weeks	Severe	severe	moderate				DRP2. synaptic transmisisondefec ts	
Sgca-/- (α-sarcoglycan)	>1 year	Moderate	None	severe	LGMD2D	RNAi			
Sgcb-/- (β-sarcoglycan)	>1 year	Severe	severe	severe	LGMD2E	RNAi	+ Notch, TGFb, EGFR genetic modifiers		
Sgcg-/- (γ-sarcoglycan)	20 weeks	Severe	severe	severe	LGMD2C	RNAi			
Sgcd-/- (δ-sarcoglycan)	>1 year	Severe	severe	severe	LGMD2F	RNAi	RNAi. Reduced lifespan +muscle and heart defects	Severe musle and heart defects	Bio14,6 / J2-NK / CHF147 / TO-2 hamsters
DG-/- (dystroglycan)	Embryonic lethal	NA	NA			DGN-1 not expressed in muscle	3isoforms, RNAi: Reduced lifespan +muscle and heart defects	similar to muscle- eye-brain disease and Walker- Warburg syndrome	
POMT1, POMT2, POMGnT1, FKTN, FKRP, LARGE, (defective O-linked glycosylation of αDG)	Reduced	Moderate	None		CMD1D, MEB dis., LGMD2K/I, WWS		muscle defects and degeneration, also causing neurological phenotypes	isoprenoid synthase domain- containing (ISPD) - -> muscle defects similar to WWS	
Dy/dy (α2-laminin)	6 months	Severe		moderate	CMD1A			candyfloss. Early	
Dy ²¹ /dy ²¹ (α2-laminin)	Reduced	Moderate/severe		moderate	CMD1A	laminin alpha ?	LAMA2 porriy correlated with fly LAMA	muscle degeneration	
Calpain-3		Moderate		severe	LGMD2A				
SJL (dysferlin)	>1 year	Mild		severe	LGMD2B	fer-1		Muscle disorganization	
PABPN1 (polyalanine expansion in poly(A) binding protein nuclear 1)		Severe	Severe		OPMD	muscle cell degeneration and abnormal motility	progressive, age dependent muscle degeneration with rimmed vacuoles and nuclear inclusions		

	Mouse	<u>Cat</u>	Dog	<u>Human</u>
α-2 laminin CMD merosin/MDC1A	dy	Siamese Maine Coon Mixed breed	Mixed breed	MDC1A
Sarcoglycans LGMD2F, 2E, 2D, 2C $\delta \beta \alpha \gamma$	myd			FCMD MEB WWS
Dysferlin LGMD2B, Myoshi	α-SG ko β-SG ko γ-SG ko δ-SG ko	{	Chihuahua Boston Terrier Cocker spaniel	LGMD2D LGMD2E LGMD2C LGMD2F
	mdx	Several breeds	Many breeds	DMD BMD

From Shelton and Engvall (2005)

Guillain-Barré Syndrome animal model: a first proof of molecular mimicry in human autoimmune disorder ?

The most frequent cause of acute neuromuscular paralysis Limb weakness and areflexia 20% immobile after 6 months 3-10% death

Acute inflammatory demyelinating polyneuropathy Acute motor axonal neuropathy

Gastrointestinal or upper respiratory symptoms 1-3 w prior onset of the neurological symptoms Trigger infectious agent ?

Guillain-Barré Syndrome animal model: a first proof of molecular mimicry in human autoimmune disorder ?

The most frequent cause of acute neuromuscular paralysis Limb weakness and areflexia 20% immobile after 6 months 3-10% death

Acute inflammatory demyelinating polyneuropathy Acute motor axonal neuropathy

Gastrointestinal or upper respiratory symptoms 1-3 w prior onset of their neurological symptoms Trigger infectious agent ?

Criteria for molecular mimicry:

- Epidemiological association between infectious agent and the immunerelated disease
- T cells or Ab against the patients's target antigens
- Microbial mimics of the target antigen
- Reproduction of the disease in an animal model

(Cell Mol. Life Sci. 2000)

In GBS:

- *Campylobacter jejuni*: leading cause of acute gastroenteritis
- The most common antecedent micororganisms in GBS:
 - 26% GBS patients
 - 2% household controls
 - 1% age-matched hospital controls
- **AutoAbs** in GBS (plasma exchange an effective treatment)
- **IgG deposits** on the axolemma of the SC anterior roots
- IgG against GM1 in AMAN patients subsequent to C. jejuni (and titers decrease with clinical course)

Shahrizaila & Yuki

- No autoAb in C. Jejuni patients with no neurological sequelae
- Terminal structure of *C. jejuni* Lipo-OligoSaccharide similar to GM1 :

AMAN model : sensitization of rabbits with bovine brain GM1

- \rightarrow High titers of anti-GM1 Ab followed by acute flacid limb weakness
- \rightarrow Wallerian-like degeneration
- \rightarrow Macrophage infiltration and IgG deposits on the anterior root axons

Model to verify molecular mimicry :

- **1.** Active immunization against components of antecedent infectious agents:
- C. Jejuni LOS bearing a GM1-like structure in Rabbits
- \rightarrow IgG anti-GM1 Ab and flacid limb weakness
- → Macrophage infiltrates in the periaxonal spaces surrounded by an intact myelin sheat
- \rightarrow Axonal degeneration

2. Passive model: ex vivo nerve-muscle preps. from GM1-overexpressing mice exposed to mouse IgG anti-GD1 mAb + complement

→ Ab+C deposits on the presynaptic axons + ultrastructural damages and EMG blockade (same with human sera) (disappearance of Na+ channel clusters) Nafamostat mesilate , a potential therapeutic agent

Animal models can lead to the identification of an homologous gene in humans

Identification of a Mutation in Porcine Ryanodine Receptor Associated with Malignant Hyperthermia

Junichi Fujii,* Kinya Otsu, Francesco Zorzato,† Stella de Leon, Vijay K. Khanna, Janice E. Weiler, Peter J. O'Brien, David H. MacLennan‡

Malignant hyperthermia (MH) causes neurological, liver, and kidney damage and death in humans and major economic losses in the swine industry. A single point mutation in the porcine gene for the skeletal muscle ryanodine receptor (ryr1) was found to be correlated with MH in five major breeds of lean, heavily muscled swine. Haplotyping suggests that the mutation in all five breeds has a common origin. Assuming that this is the causal mutation for MH, the development of a noninvasive diagnostic test will provide the basis for elimination of the MH gene or its controlled inclusion in swine breeding programs

SCIENCE, VOL. 253

1/12000-50000 anesthetic events (massive rhamdomyolysis, acidosis, hyperthermia, often fatal)

Major economic losses in the swine industry Dantrolene as a therapy

Myostatin, the Schwarzenegger gene

Grobet et al, 1997 Kambadur et al., 1997

> Heterozygot Whippet dog (premature STOP codon at aa 313) Mosher et al., 2007

Myostatin mutations

McPherron et al., 1997; Zsabo et al., 1998; Zhu et al., 2002 Bovines Mouse

nt821(dell1) Hyperplasia nt419(del7-insl0) C313Y Q204X E226X F84L (Grobet et al., 1997; Kambadur et al., 1997) Mouse Knockout Hypertrophy + (McPherron *et a*l., 1997), yperplasia

nt821(dell1) Hyperplasia (Nishi et al., 2002)

Proteolytic clivage site $RSRR \rightarrow GLDG$ (Zmu et al., 2000) Hypertrophy

nt775(dell2) (Cmpt) (Szabo et al., 1998) Hypertrophy Neonate 7 Months Schuelke et al., 2004 Human

> $\mathbf{G} \rightarrow \mathbf{A}$ Nucléotide 5 'intron 1 (Schuelke *et al.*, 2004)

propeptide

Monoclonal antibodies : anti-myostatin (Wyeth, Eli Lilly (DMB, FSH, LGMD)

f olli statin

anti-ActRII (Acceleron/Shire, Amgen, Novartis)

From genetic muscle diseases to muscle wasting disorders (cancer/AIDS cachexia, ageing)

Inhibition of myoblast proliferation and differentiation

Animal models instrumental to decipher cellular and physiological functions in the PNS

Defects in proteins involved in membrane remodeling (i.e. amphiphysin 2 (BIN1), dynamin 2, myotubularin and MT-related proteins) → different forms of centronuclear myopathy, Charcot-Marie-Tooth neuropathies

Different proteins leading to similar diseases → common mechanisms

- Cell/cell adhesion
- T-tubule biogenesis
- Synaptic vesicule formation, endocytosis, and recycling
- Myelin sheat formation

In spite of the existence of differences in some phenotypes, and provided careful standardisation, animal models bring important clues to the understanding of the pathogenesis of NMD and are very valuable for testing strategies for therapeutic approaches.

ANIMALS